

Complete Streets Webinar Series

Part 2: Complete Streets Best Practices Review: Design Options for Making Your Streets Complete

What is and Why WalkWorks?

- Collaboration of the Pennsylvania Department of Health and the University of Pittsburgh Graduate School of Public Health
- Mission: To improve health status by addressing chronic disease risk factors to prevent and reduce obesity, diabetes, heart disease and more
 - Increase physical activity in built environment through development of walking routes
 - Influence policy by funding development of active transportation plans designed to increase opportunities for physical activity
- Method: Community-based partners, municipalities, planning organizations

CIS

Today's presenter

Jeff Riegner Whitman, Requardt & Associates, LLP jriegner@wrallp.com

Smart Growth America Making Neighborhoods Great Together National Complete Streets Coalition	
Most presentation content courtesy of the	
National Complete Streets Coalition	
www.completestreets.org	
Three-part series on Complete Streets	
 Part 1: Complete Streets basics and benefits (held on March 28, 2019) 	
 Part 2: Best practices in Complete Streets (today's webinar) 	
 Part 3: Complete Streets planning and policies, Thursday, April 18 	
5.	
Best Practices for Design	
of Complete Streets	
<u>&</u>	

Design controls

- Functional classification
- Design speed
- Lane & roadway width
- Capacity & delay
- Intersection design
- Design vehicle

Old paradigm: "passive" design "Forgives" behavior through design, assumes worst case Designed for high speeds and high volumes Encourages high-risk behaviors from all users: Driving too fast; crossing mid-block; bicycling on sidewalks Limits land use and building types, street life

New paradigm: "proactive" design Changes behavior through design Guides users through physical and environmental cues Slows vehicle speeds Encourages walking, bicycling, transit use Key to successful Complete Streets implementation

Minimum design often doesn't mean quality design for walking and bicycling

- Every mode needs quality accommodations
 - Safe
 - Direct
 - Comfortable, low-stress
- Design to maximize these goals for walking and bicycling rather than designing to minimum requirements

Functional classification

Speed impacts interactions			
Drivers less likely to stop for people at crosswalks when driving at 30 mph +			
			Percentage Yielding
			0 20 40 60 80 100
		Auckland Street at Savin Hill Avenue	
		Gibson Street at Dorchester Avenue	— 20 mph
	Saint F	Paul Street at Sewall Avenue (in Brookline)	
	_	King Street at Adam Street	
	Location	Dorchester Avenue at Van Winkle Street	— 30 mph
	Š	Mayfield Street at Pleasant Street	
		Fletcher Street at Centre Street	
		Peak Hill Road at West Roxbury Parkway	→ 40 mph
		Hyde Park Avenue at Eldridge Road	
- d	FIGURE 4 Brookline.	Driver speed and yielding compliance at	nine study locations in Boston and
			Source: Bertulis and Dulaski, 2014.

To reduce operating speed:

- Narrower lane widths
- Narrower roadway
- Add "friction" with on-street parking, landscaping
- Space and synchronize signals for moderate speeds
- Smaller curb radii
- Reduced "shy distance" from median
- No superelevation
- Design of right turn lanes
- Horizontal deflection: curb extensions, chicanes
- Vertical deflection: speed humps, tables
- Textured paving
- Coordinate with building design to constrain sightlines

Costs to control operating speeds

- Design to E LOS → less pavement = less cost
- Narrower travel lanes → less pavement = less cost
- Signal progression → cost to interconnect

حلاك

Costs to control operating speeds

- Design to E LOS → less pavement = less cost
- Narrower travel lanes → less pavement = less cost
- Signal progression → cost to interconnect
- Raised medians → include in project scope

Medians and pedestrian crossings:

- May reduce pedestrian crashes by 46% at marked locations
- May reduce pedestrian crashes by 39% at unmarked
 - May reduce driver crashes by 39%
- Enhance visibility
 - Reduce speeds

Consider medians: • Multi-lane roadways • Urban and suburban • Mixture of people walking and driving (12k ADT) Design: • 8-10' preferred, 6' minimum

	-	-	

Costs to control operating speeds
 Design to E LOS → less pavement = less cost
 Narrower travel lanes → less pavement = less cost
 Signal progression → cost to interconnect
• Raised medians $ ightarrow$ include in project scope
 On-street parking → revenue from meters
Costs to control operating speeds
• Design to E LOS → less pavement = less cost

Lane and roadway width

- Rightsizing number and width of lanes \Rightarrow minimal costs with resurfacing

	1
Constrained corridor? Rightsize it!	
Convert 4-lane to 2 lanes, TWLTL, & bike lanes	
29% crash reduction for ALL users	
A 5	
FHWA proven safety countermeasure	·
"Road diets can be low cost if planned in	
conjunction with reconstruction or simple overlay projects, since a road diet mostly	
consists of restriping. Roadways with Average	-
Daily Traffic (ADT) of 20,000 or less may be good candidates for a road diet and should be	
evaluated for feasibility."	
C/A'S	
	
Dieletaie in a teach Name and the college	
Rightsizing tool: Narrower travel lanes	
Ten feet should be the default width for general purpose lanes at speeds of 45 mph or	
less.	
ITE Traffic Engineering Handbook, 7th Edition	
CÓS .	

Overestimated VMT

- Implies a level of "needed" spending that is unachievable
- Encourages overbuilding projects, which leads to fewer projects and more maintenance costs
- Discourages lower-cost, lower-throughput streets that benefit communities

Intersection design

Intersection principles

- Compact
- Self-evident
- Simple, right angles
- Access management
- Time for safety of all users

Improving intersections, inexpensive: Signal timing • Short cycles to function as network • Reduce person delay • Ensure enough time for people of all ages and abilities to cross • Coordinated for low-speed travel • Fixed-time signals where pedestrians are expected

Square off skewed intersections Improve visibility, safety for drivers Reduce crossing distance for people walking Model Design Manual for Living Streets, Michele Weisbart

Lessons:

- Accommodate safe travel for all users
 - But aim for comfortable, attractive routes for walking, bicycling, and transit
- Use an iterative design process
 - Re-evaluate assumptions and decisions
 - Document your choices
- Don't fear unique designs
- Don't fear piloting new designs

Exercise

What streets in your community could benefit from re-imagining?

Please type your response into the question box. You may include the name of your community if you like.

Three-part series on Complete Streets

- Part 1: Complete Streets basics and benefits (held on March 28, 2019)
- Part 2: Best practices in Complete Streets (today's webinar)
- Part 3: Complete Streets planning and policies, Thursday, April 18

Sign up for Part 3 at pawalkworks.com!

87