Final Self Feeder

References

• Thorsen, R., Bortot, F., & Caracciolo, A. (2019). From patient to maker - a case study of co-designing an assistive device using 3D printing. Assistive Technology, 33(6), 306–312.

https://doi.org/10.1080/10400435.2019.1634660

• Kim, J. H., Yang, H. S., Han, S. H., Lee, B. M., Lee, Y. K., Sim, W. S., Park, G. S., Lee, S. B. N., & Jo, M. (2022). Application of a 3D-Printed Writing–Typing Assistive Device in Patients with Cervical Spinal Cord Injury. Applied Sciences, 12(18), 9037. https://doi.org/10.3390/app12189037

Engineering Process

Problem Identification

Self Feeder:

- A client with multiple sclerosis (MS) was having issues with their self feeder. The existing selffeeder required excessive head/neck movement. The client had minimal arm and neck mobility, making their current device inefficient.
- These issues disrupted mealtimes and their independence. The key problems included physical strain and lack of adjustability.

Innovative iPad Stand:

- A client with multiple sclerosis is struggling to use her tablet in her wheelchair and on her desk. Her current stand is unstable, relying on cardboard and a grip mat for support. Due to limited fine motor skills, she often presses too hard, causing the stand to shift.
- She cannot use a regular iPad case because she is unable to prop the tablet independently.

Self Feeder:

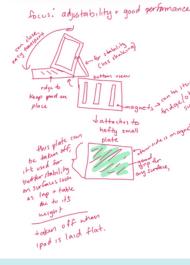
- We brainstormed ways in which the self feeder would be less agitating, while also balancing the client's independence.
- We wanted to include personalizable aspects to it so that the client could feel more connected to the device.
- 3D printing allows designs to be easily modified and reprinted overtime if the condition of the patient changes.

Innovative iPad Stand:

Sketch 1 [Scratched, too many useless components]

Indepinity: Assistive Technology

Philadelphia Performing Arts Charter School By: Dylan E, Celine J, Diana B, Philana T, & Penelope G


- quality of life.
- modular.
- Through the Engineering Process, we identified problems, brainstormed ideas, prototyped designs, tested solutions, and iterated based on user feedback to ensure functionality.
- We partnered with the Inglis House in Philadelphia, a facility specializing in care for adults with physical disabilities. This collaboration provided insight into client challenges and feedback into the design of assistive devices.

Acknowledgments & Consideration of Commonwealth

- goals and live fulfilling lives.
- Inglis has a 3D printing lab that creates personalized technology.
- They introduced us to clients facing tech challenges, and we developed innovative solutions to help not just them, but a broader community. Inglis provided valuable insights into client limitations and feedback on our designs.
- The needs of Commonwealth residents can be addressed through the applications of STEAM. STEAM ensures that challenges are addressed with creativity, science, and technical thinking.
- For example, improving public transit can involve designing energy-efficient systems. Art in transit designs increase community harmony, while science ensures sustainability.
- The incorporation of art into fulfilling the needs of commonwealth residents brings joy to life and science.

Sketch 2: Extruded Ridges

Abstract

• Our team identified the needs of individuals with disabilities, focusing on enhancing independence and

• Using Universal Design principles, we developed solutions that were adaptable, user-centered, and

• This allowed us to create innovative, personal solutions that directly addressed community needs.

• We partnered with Inglis House in Philadelphia, a nursing care facility for adults with physical disabilities, like multiple sclerosis. They also support non-residential clients and aim to help individuals achieve their

Prototyping

• This prototype did not have personalizable aspects to it. Some of the prints came out flimsy as well. The next prototype must be customizable and stable.

Prototype 2:

• This prototype was created with high resolution, which made it more stable and safe. The spoon part now has personalizable insert aspect to it.

Innovative iPad Stand: Prototype 1:

• Limited materials, fabric for comfort and aesthetic, hot glue did not work well. The rod made it work but was weak.

Testing Self Feeder:

Testing 1:

 The stand and bowl kept shift These pieces need to stay in same place at all times.

Testing 2:

• The edges of the spoon can b rough. This can irritate or cut client's mouth.

Testing 3:

• Some of the magnetic strips v weak. We must buy stronger magnets.

Innovative iPad Stand:

Testing 1:

• Some of the wood is rough, v should use fabric to cover it.

Testing 2:

 Using hot glue for grip looked tacky and the material was fraying. We might eliminate material all together.

Testing 3:

• Some of the wood is heavy, w will try to use thinner wood.

Links Website: X9UhoSdaE0 **Budget:** <u>2.png</u>

https://www.indepinity.com **Prototype Demo video:** https://www.youtube.com/watch?v=-

https://static.wixstatic.com/media/ad6d36 8e0e83350991456e96a7c5d5d2ab3eca~mv

	Iteration
	Self Feeder:
ting. the	 We added grippy material under the spoon stand and bowl
oe t the	 to keep them in place. We smoothened the edges of the mouth
	part of the spoon to avoid irritation.
were	 We bought stronger magnets to keep everything in place
	better.
	Innovative iPad Stand:
we	 We used grippy
	material to keep the
	iPad stand from
d	moving.
	 We decided to only
	use wood and minimal
	fabric, ensuring to
	sand the wood to
we	prevent splinters or
	cuts. This wood is
	more lightweight.