
Software Test Planning Page 1 of 16

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT’S OF PUBLIC WELFARE,

INSURANCE, AND AGING

INFORMATION TECHNOLOGY STANDARD

Name Of Standard:

Software Test Planning

Number:

STD-EASS008

Domain:

Application Domain

Category:

Testing / Software Quality Assurance

Date Issued:

05/04/2010

Date Revised:

02/25/2014

Issued By Direction Of:

Shirley A. Monroe, Dir of Div of Technical Engineering

Abstract:

The delivery of quality software is the result of thorough test planning and proper
execution. The Software Test Plan acts as a road-map for all software testing
within a project. It describes which phases of testing will be implemented during
the various stages of software development. The Software Test Plan shall reflect
the overall test strategy which has been drawn up for the testing function and
should be written by the Test Manager for the project to which it pertains.

The Software Test Plan framework is based on the Software Development
Methodology (SDM) planned for individual projects (i.e., Modified Water Fall,
Rapid Application Development methods). While the SDM test plan framework
outlines a consistent method to plan and execute testing of information systems,
each test plan is unique and requires careful and comprehensive planning. A
Software Test Plan should describe the overall planning efforts and test
approach for all testing throughout a project. The Software Test Plan is used to
define, align, and outline: a) test strategies and approaches, b) governance, c)
resource requirements (i.e., people, places, and things), d) test coverage, e) test
cycles and durations, f) ownership, g) pass/fail criteria, h) test schedule, i)
business and technical alignment, and j) reporting. The test plan shall be a
specific SDLC deliverable integrated into the project management and quality
management plans for information systems projects.

The objective of test planning is: 1) Map out a comprehensive actionable test
plan that ensures test coverage and test effectiveness, 2) Improve the integrity of

Software Test Planning Page 2 of 16

the IT solution development and delivery processes, and 3) Validate operational
readiness and end product quality. Test coverage refers to a coverage metric
that evaluates thoroughness of testing. Hence, the test design and parameters
must thoroughly test and exercise all the systems business and technical
functionality, features, components, interfaces, and capabilities linked back to
specific business and/or systems requirement.

Test effectiveness refers to the fault-detecting ability of the software testing
techniques based on the coverage specified and the all-use case and associated
data set testing criterion. Although exhaustive testing is not always feasible, the
intent is to validate the business solution or proposed technology’s operational
readiness, integrity, and reliability while eliminating defects from migrating into a
live production environments through comprehensive software application
testing, quality assurance, and quality control project management processes
and procedures.

General:

Software releases that involve major modifications or enhancements that change
systems functionality and business operations (i.e., processes and procedures)
are required to have a formal Software Release Test Document (SRTD) with
integrated test plans. The Software Release Test Document has three core
components: 1) Systems Test Plan (i.e., Unit, Module, System’s Integration
testing), 2) Performance and Compliance Test Plan (i.e., Security Vulnerability,
Load & Performance, and ADA testing), and 3) User Acceptance Test Plan.
Each component of the SRDT should be all inclusive documenting all software
test phase plans, schedule, and results. Hence, the SRDT is a dynamic
document in which tests phases are planned, established, approved, and
executed throughout the project SDLC phases. Within the Project Management
Framework, the Software Release Test Document and associated Software Test
Plans components are created and executed during the appropriate SDLC
phases throughout the project life cycle. The systems test plan should outline
the test specifications, resources, and schedule associated with the solution build
process (i.e., unit, module, and systems integration test phases) and established
prior to beginning of development phase. Similarly, the user acceptance test
plan should outline the test specifications, resources, and schedule associated
with the systems acceptance test (SAT) phase and be established prior to
systems integration testing phase completion. The Performance & Compliance
Test Plan (i.e., Security Vulnerability, Load & Performance, and ADA testing)
should outline the test specifications, resources, and schedule is established
prior to beginning of implementation phase. The Software Release Test
Document and associated components serve as actual project deliverables as
well as a software system’s life cycle management document of record. The
individual Software Test Plans should address but is not limited to, the following
elements:

Software Test Planning Page 3 of 16

Identify and describe the test phases to be executed during the SDLC and
their respective ownership (i.e., roles and responsibilities)

Describe the methodology for each test phase including testing types to be
executed and the elements of testing to be used to determine correctness of
the system (i.e., functions, features, performance) or system component

Identify the general test scope, objectives, test types, test scenarios, data-
sets, environment, and logistics

Identify the inherent interdependencies of executing and validating complex
integrated functional tests, systems components, and interfaces

Identify the entry, suspension, and exit criteria for each test and overall test
phase

Define test cycles and durations with mappings to testing resources and
schedule allowing time for break-fix-retest iterations (i.e., systems regression
testing and revalidation cycle times)

Define test coverage specifications by aligning test ID, requirement ID,
associated software systems modules/components, and corresponding
functionality or attributes.

Define expected outcomes and specific test pass/fail criteria

Define testing staff and their required knowledge and skill-sets to execute
tests, identify and document anomalies, and accurately assess operational
readiness

Outline governance for evaluating, confirming, and documenting anomalies
and defects

Define defect limits, thresholds and tolerances for rework and/or mitigation

Define systems acceptance (Go or No-Go) criteria based on defect types and
severity as well as evaluation of test results relative to overall systems
functionality, integrity, performance, and capability to successfully support
business operations.

Define the schedule of test activities, deliverables, and milestones

Define the monitoring activities and milestones required to evaluate actual
progress to plan

Define the reports that will be produced to communicate the progress of test
execution and test results

Manage test preparation and execution

Test Plans and documents should be linked to a specific software version or
product release cycle

Software Test Plans must be developed in coordination with and be accessible
by appropriate project team and stakeholder entities. In addition, all schedule
and work plan activities and roles and responsibilities required for the execution
of the Software Test Plans must be integrated into the Project Management Plan
and DPW defect management processes and procedures. All information in the
Software Release Test Document and associated Software Test Plans must be
consistent with the Project Management Plan and the related project documents
of record.

Software Test Planning Page 4 of 16

The Software Release Test Document and associated Software Test Plans must
be updated to maintain consistency with other project documents throughout the
project life cycle and then be accessible in the future to designated staff for DPW
software life cycle management, software quality assurance, and ITIL continuous
improvement initiatives.

The test plan outline shall include but is not limited to the following components:

1. Software System Overview
Describe the purpose of the system and the software to which this document
applies. Describe the general nature of the system and software; summarize the
history of system development, operation, and maintenance; identify the project
sponsor, acquirer, user, developer, and maintenance organizations; identify
current and planned operating sites; and list other relevant documents.

2. Scope of Testing
Document all tests that will be conducted throughout each phase of the project.
Any testing that will not be performed in each phase should also be identified
(i.e., tests included and tests excluded). Scope definitions should include test
coverage relative to functionality and /or systems components that will be tested
and validated.

 Identify the test level (e.g., unit test, software integration test, functional
validation test, enterprise performance test) and contain a full identification of the
system and the software to which this document applies, including as applicable,
identification number(s), title(s), abbreviation(s), version number(s), and release
number(s).

3. Test Objectives
Provide the test objectives to be accomplished at this test level. The objectives
determine the particular attributes of the application on which testing will focus,
and will drive the selection of tests to be performed. They may be repeated, or
modified, as necessary. Examples of test objectives include module logic, intra-
system module interfaces, external interfaces, capacity and performance, stress
testing, user interfaces, functional requirements, security, and end-to-end
business scenarios.

4. Participating Organizations
Identify the organizations, commonwealth agencies, and business partners that
will participate in the testing at the test site(s) and the roles and responsibilities,
including verification of memorandums of understanding (MOUs) for each
organization.

5. Personnel (Business and Technical)
Identify the number, type, and skill level of personnel needed during the test
period at the test site(s), the dates and times they will be needed and any special
needs, such as makeshift operation and retention of key skills to ensure
continuity and consistency in extensive test programs.

Software Test Planning Page 5 of 16

6. Test Plan Approach
This is a high level description of the approach to be used for the SRDT test
plans to test the software for each test phase. This is a general description of the
types of testing which will be employed in the SDLC phases and outlining key
strategies, identifying requirements and potential constraints. Items to include:

Requirements traceability

Scope of test cases (degree of coverage)

Test objectives

Test cases will be creation, review, and approvals

The use of an automated test tool vs. manual testing

Who will be executing the tests (e.g. testers, end users, developers)

Test preparation and configuration requirements

Describe any security or privacy protection considerations.

7. Risks and Assumptions
Identify and describe possible risks and assumptions that may impact the testing.
Examples of these include: schedule slippage and/or unavailability of needed
software packages and databases.

8. Test Design Components

Design Validation
Ensure tests are structured to validate business and technical requirements.

Data Validation
What types of data will require conversion and validation? What parts of the
feature or function will use what types of data? What are the data types that test
cases will address? Etc.

API Testing
What level of API testing will be performed? What is justification for taking this
approach (only if none is being taken)?

Content Testing
Is your area/feature/product content based? What is the nature of the content?
What strategies will be employed in your feature/area to address content related
issues?

Systems-Resource Testing
What systems resources does your feature use? Which are used most, and are
most likely to cause problems? What tools/methods will be used in testing to
cover low resource (memory, disk, etc.) issues?

Software Test Planning Page 6 of 16

Setup Testing
What are the necessary requirements for a successful setup to test features,
functionality, or systems components? What is the testing approach that will be
employed to confirm valid setup of these elements?

Modes and Runtime Options
What are the different run time modes the program can be in? Are there views
that can be turned off and on? Controls that toggle visibility states? Are there
options a user can set which will affect the run of the program? List here the
different run time states and options the program has available. It may be
worthwhile to indicate here which ones demonstrate a need for more testing
focus.

Interoperability
How will this software or product interact with other products? What level of
knowledge does it need to have about other programs, program interaction and
fundamental system changes? What methods will be used to verify these
capabilities?

Integration Testing
Go through each area in the software or product and determine how it might
interact with other internal modules, components or external application software,
shared services, and/or associated platform technologies. The test types and
cases created should exercise and validate all integration points.

Systems Compatibility & Configurations (Clients & Servers)
Is there a standard protocols and/or specific configurations requirements for the
servers or that the clients are expected to use during the SDLC testing phases?
How many and which clients are expected to use your feature? Are there
subtleties in the interpretation of standard protocols that might cause
incompatibilities at the desktop or server level? How will the testing approach
validate client and/or server compatibility? Is your server suited to handle ill-
behaved clients? Are there non-standard, but widely practiced use of your
protocols that might cause incompatibilities?

Environment/System - General
Are there issues regarding the environment, system, or platform that should get
special attention in the test plan? What are the run time modes and options in the
environment that may cause difference in the feature? Are there platform or
system specific compliance issues that must be maintained or reconfigured to
support production environments?

Configuration
Are there configuration issues or requirements regarding hardware and software
in the environments that may be used in the test plan? Are there any internal
components and/or external third party product configurations or monitors
required during the test durations?

User Interface
List the items in the feature that explicitly require a user interface. Is the user
interface designed such that a user will be able to use the feature satisfactorily?
How will the interface testing be approached?

Performance & Capacity Testing
How fast and how much can the feature do? Does it do enough fast enough?
What testing methodology will be used to determine this information? What
criterion will be used to indicate acceptable performance? If modifications of an

Software Test Planning Page 7 of 16

existing product, what are the current metrics? What are the expected major
bottlenecks and performance problem areas on this feature?

Scalability
Is the ability to scale and expand this feature a major requirement? What parts of
the system or specific feature are most likely to have scalability problems? What
approach will testing use to define the scalability issues in the feature?

Stress Testing
How does the system of feature react when pushed beyond its performance and
capacity limits? How is its recovery? What is its breakpoint? What is the user
experience when this occurs? What is the expected behavior when the client
reaches stress levels? What testing methodology will be used to determine this
information? What area is expected to have the most stress related problems?

Volume Testing
Volume testing differs from performance and stress testing in so much as it
focuses on doing volumes of work in realistic operational or production
environments. Run the software as expected user will - with certain other
components running, or for so many hours, or with data sets of a certain size, or
with certain expected number of repetitions that mirror day-to-day business
environments as well as peak business cycles.

International Issues
Confirm localized functionality, that strings are localized and that code pages are
mapped properly. Assure program works properly on localized builds, and that
international settings in the program and environment do not break functionality.
How is localization and internationalization being done on this project? List those
parts of the feature that are most likely to be affected by localization. State
methodology used to verify International sufficiency and localization.

Robustness
How stable is the code base? Does it break easily? Are there memory leaks? Are
there portions of code prone to crash, save failure, or data corruption? How good
is the program’s recovery when these problems occur? How is the user affected
when the program behaves incorrectly? What is the testing approach to find
these problem areas? What is the overall robustness goal and criteria?

Error Testing
How does the program handle error conditions? List the possible error
conditions. What testing methodology will be used to evoke and determine
proper behavior for error conditions? What feedback mechanism is being given
to the user, and is it sufficient? What criteria will be used to define sufficient error
recovery?

Usability
What are the major usability issues on the feature? What is testing’s approach to
discover more problems? What sorts of usability tests and studies have been
performed, or will be performed? What is the usability goal and criteria for this
feature?

Accessibility
Is the feature designed in compliance with accessibility guidelines? Could a user
with special accessibility requirements still be able to utilize this feature? What is
the criteria for acceptance on accessibility issues on this feature? What is the
testing approach to discover problems and issues?

Software Test Planning Page 8 of 16

User Scenarios
What real world user activities are you going to try to mimic? What classes of
users (i.e. secretaries, artist, writers, animators, construction worker, airline pilot,
shoemaker, etc.) are expected to use this program, and doing which activities?
How will you attempt to mimic these key scenarios? Are there special niche
markets that your product is aimed at (intentionally or unintentionally) where
mimic real user scenarios is critical?

Boundaries and Limits
Are there particular boundaries and limits inherent in the feature or areas that
deserve special mention here? What is the testing methodology to discover
problems handling these boundaries and limits?

Operational Issues
If your program is being deployed in a data center, or as part of a customer's
operational facility, then testing must, in the very least, mimic the user scenario of
performing basic operational tasks with the software.

Data Set, Files Refresh and Backup
Identify all data sets and files required to conduct the tests, and indicate how
those will be secured, refreshed, and backed up for individual test cycles. Also
identify key services that are turned off or remain running, determine whether or
not it is possible to backup the data and still keep services or code running.

Recovery
If the program goes down, or must be shut down, are there steps and procedures
that will restore program state and get the program or service operational again?
Are there holes in this process that may make a service or state deficient? Are
there holes that could provide loss of data. Mimic as many states of loss of
services that are likely to happen, and go through the process of successfully
restoring the software application or service.

Archiving
Based on the Information Life Cycle management requirements, a test should be
constructed to validate such business and system requirements to ensure proper
execution and retrieval. Is archival of data going to be considered a crucial
operational issue on your feature? If so, is it possible to archive the data without
taking the service down? Is the data, once archived, readily accessible?

Monitoring
Does the service have adequate monitoring messages to indicate status,
performance, or error conditions? When something goes wrong, are messages
sufficient for operational staff to know what to do to restore proper functionality?
Are the "hearbeat" counters that indicate whether or not the program or service is
working? Attempt to mimic the scenario of an operational staff trying to keep a
service up and running.

Migration
Is there data, script, code or other artifacts from previous versions that will need
to be migrated to a new version? Testing should create an example of installation
with an old version, and migrate that example to the new version, moving all data
and scripts into the new format. Need to identify all data files, formats, or code
that would be affected by migration, the solution for migration, and how testing
will approach each.

Software Test Planning Page 9 of 16

Special Code Profiling and Other Metrics
How much focus will be placed on code coverage? What tools and methods will
be used to measure the degree to which testing coverage is sufficiently
addressing all of the code?

Compliance Certifications
Identify the compliance certifications that are expected to be completed. Define
test methods and technologies required to secure certifications. Compliance
certifications may be required for user interfaces, performance, interoperability,
interfaces, and security.

General Test Conditions
Describe conditions that apply to all of the tests or to a group of tests. For
example: “each test shall include nominal, maximum, and minimum values;”
“each test of type x shall use live data;” “execution size and time shall be
measured for each software item.” Include a statement of the extent of testing to
be performed and rationale for the extent selected. Express the extent of testing
as a percentage of some well-defined total quantity, such as the number of
samples of discrete operating conditions or values, or other sampling approach.
Provide the approach to be followed for retesting/regression testing.

Test Cycles, Durations & Progression
Define the test cycles and durations to determine level of effort and time
schedules. Factor in break-fix-retest iterations as well. In cases of progressive or
cumulative tests, define the planned sequence or progression of tests.

Test Phase Transition Criteria
The following describe required criteria in order for testing to move from one
state to another.

Entry Criteria
List all criteria that must be met in order for test execution to begin. Possible
items to list include:

Test plan approved

Test environment stable and ready

Test cases written and approved

Test tools ready

Previous test phase’s exit criteria met

Test resources available

Exit Criteria
List all criteria that must be met in order for this test phase to be considered
complete. Possible items for inclusion are:

Test case completion

Number and severity of open defects

Passing of test objectives

Software Test Planning Page 10 of 16

Suspension Criteria
This section should include criteria or conditions that if they occur, testing should
be stopped. This is to avoid instances when the test team is asked to continue
testing in an attempt to meet published schedules when in reality the software is
not ready for testing.

Resumption Criteria
In this section list criteria that must be met before testing can resume, in the
event testing is suspended.

9. Test Plan Logistics & Coordination

Document Overview
Describe the relationship of the Software Test Plan to related project
management plans. Describe how this test plan fits into the overall document
structure that exists. This may include:

Overall test strategy

Other test phase test plans

Company or group/department-wide test documents (e.g. Software
Quality Assurance Plan)

List the number, title, revision, date, and source of all documents
referenced in this plan.

Test Plan Approvals
List everyone who has to either review or approve the test plan document in
this table, along with their project role.

Name Project Role Approval Date Responsibility

 Approver

 Reviewer

Software Test Site Environments
Describe the software test environment at each intended test site. Reference
may be made to the Software Development Plan (SDP) for resources that are
described there.

Site Identification
Name of test site(s). Identify one or more test sites to be used for the testing,
describe the software test environment at each site. If multiple test sites use
the same or similar software test environments, they may be discussed
together. Referencing earlier descriptions may reduce duplicative information
among test site descriptions.

Software

Software Test Planning Page 11 of 16

Identify by name, number, and version, as applicable, the software (e.g.,
operating systems, compilers, communications software, related applications
software, databases, input files, code auditors, dynamic path analyzers, test
drivers, preprocessors, test data generators, test control software, other
special test software, post-processors) necessary to perform the planned
testing activities at the test site(s). Describe the purpose of the software,
describe its media (tape, disk, etc.), identify software expected to be supplied
by the site, and identify any classified processing or other security or privacy
protection issues associated with software.

Hardware and Firmware
Identify by name, number, and version, as applicable, the computer
hardware, interfacing equipment, communications equipment, test data
reduction equipment, apparatus such as extra peripherals (tape drives,
printers, plotters), test message generators, test timing devices, test event
records, etc., and firmware that will be used in the software test environment
at the test site(s). Describe the purpose of the hardware or firmware, state the
period of usage and the number of each needed, identify those that are
expected to be supplied by the site, and identify any classified processing or
other security or privacy protection issues associated with the hardware or
firmware.

Other Materials
Identify and describe any other materials needed for the testing at the test
site(s). These materials may include manuals, software listings, media
containing the software to be tested, media containing data to be used in the
tests, sample listings of output, and other forms of instructions. Identify those
items that are to be delivered to the site and those that are expected to be
supplied by the site. Include the type, layout, and quantity of the materials, as
applicable. Identify any classified processing or other security or privacy
protection issues associated with the items.

Proprietary Nature
Acquirer’s Rights, and Licensing. Identify the proprietary nature, acquirer’s
rights, and licensing issues associated with each element of the software test
environment.

Installation, Testing, and Control
Describe the developer’s plans for performing each of the following, possibly
in conjunction with personnel at the test site(s): a. Acquiring or developing
each element of the software test environment, b. Installing and testing each
item of the software test environment prior to its use, c. Controlling and
maintaining each item of the software test environment.

Resource Requirements and Commitments
Identify the number of business and technical resources required and the
domain knowledge and skill level of personnel needed during the test period.

Software Test Planning Page 12 of 16

Define the level of involvement, locations, and the dates and times they will
be needed as well as any special needs or accommodations to ensure
continuity and consistency in extensive test programs.

Data Recording, Reduction, and Analysis
Identify and describe the data recording, reduction, and analysis procedures
to be used during and after the tests identified in the individual test plans.
Include, as applicable, manual, automatic, and semi-automatic techniques for
recording test results, manipulating the raw results into a form suitable for
evaluation, and retaining the results of data reduction and analysis.

Project-unique identifier of a test
Identify a test by project-unique identifier and provide the information
specified below for the test. Reference may be made as needed to the
general information.

Test objective – identify the specific test objective for this test

Test scope – describe the depth and breadth of testing to be applied to
this specific test

Test type or class

Test requirements – Identify the specific requirements from the BRD or
SRD, to be validated by this test

Special requirements (for example, 48 hours of continuous facility time,
simulation, extent of test, use of a special input or database.)

Type of data to be recorded

Type of data recording/reduction/analysis to be employed.

Assumptions and constraints, such as anticipated limitations on the
test due to system or test conditions-timing, interfaces, equipment,
personnel, database, etc.

Safety, security, and privacy protection considerations associated with
the test

Test Work Plan and Schedules.
Provide or reference the schedules for conducting the tests identified in this
plan. Include:

A listing or chart depicting the sites at which the testing will be
scheduled and the time frames during which the testing will be
conducted.

Describe the total scope of the planned testing. Describe each test to
be performed in a separate subsection for each function or software
item to be tested.

Define items and systems to be tested. Identify a function, software
item, subsystem, system, or other entity by name and project-unique
identifier. Describe each test planned for the item(s). (Note: the “tests”

Software Test Planning Page 13 of 16

in this plan are collections of test cases. There is no intent to describe
each test case in this document.)

A schedule for each SRTD test plan should be developed and included
in the master project plan outlining the tasks, resources,
dependencies, timeline, and deliverables. .

A schedule for each test site depicting the activities and events listed
below, as applicable, in chronological order with supporting narrative
as necessary.

On-site test period and periods assigned to major portions of the
testing

Pretest on-site period needed for setting up the software test
environment and other equipment, system debugging, orientation, and
familiarization

Collection of database/data file values, input values, and other
operational data needed for the testing

Conducting the tests, including planned retesting.

Preparation, review, and approval of the Software Test Reports

Orientation Plan
Describe any orientation and training to be given before and during the
testing. This training may include user instruction, operator instruction,
maintenance and control group instruction, and orientation briefings to staff
personnel. If extensive training is anticipated, a separate Training Plan may
be developed and referenced here.

10. Business Requirements Traceability & Test Coverage
Traceability from each test identified to the applicable business requirements
identification number as defined in the BRD. The test coverage is defined by
forming a cross-reference map to requirements, functionality being tested, the
test scenarios used to test and validate functionality, and the specific software
modules that will be exercised for the particular Test ID. The criticality
quantifies the level of importance of the test relative to the success or failure of
the function’s impacts on overall operational readiness and Go/No-Go decision
criteria. An example is shown in figure 1 below:

Figure 1

Test
ID

Test Name Function Scenario Module (s) Requirements ID
Numbers

Criticality Pass/Fail

Criteria

Software Test Planning Page 14 of 16

11. System Requirements Traceability
Traceability from each test identified to the applicable systems requirements
identification number as defined in the SRD. The test coverage is defined by
forming a cross-reference map to requirements; systems attribute being tested,
the test scripts used to test and validate functionality, and the specific
component that will be exercised for the particular Test ID. The criticality
quantifies the level of importance of the test relative to the success or failure of
the attribute’s impact on overall operational readiness and Go/No-Go decision
criteria. An example is shown in figure 2 below:

Figure 2

Test
ID

Test Name Attributes Test Scripts Component Systems
Requirements ID

Numbers

Criticality Pass/Fail

Criteria

12. Test Case Tracking
Describe how the status of each test case will be tracked for each test iteration.
Also include the criteria for deciding how to determine the status of each test
case (e.g. what needs to happen for a test case to be passed, failed, blocked,
etc…). If a test management tool exists, references can be made to the
documented processes from the tool.

13. Test Defect Tracking
Tracking detail:

What tool is utilized for defect tracking

Statuses used and what they mean

Classification definitions

The defect workflow, including roles (i.e. who makes the determination
that a defect is ready to test, or can be closed)

Defect management for defect discovery, documenting, validating, tracking,
resolution should follow DPW standards and guidelines for each test plan.

14. Test Discrepancies
This section shall contain a description of the procedures that will be used to
capture, configuration control, and clear software discrepancies identified during
tests. These procedures will be consistent with DPW Configuration Management
policy and project governance processes.

Software Test Planning Page 15 of 16

15. Appendices

APPENDIX A - ACRONYMS
Describe the acronyms as they are used in the plan.

APPENDIX B - DEFINITIONS
Describe the key terms as they are used in the plan.

APPENDIX C - REFERENCES
Provide a complete list of documents referenced in the text of the plan.
Each reference shall contain document number, title, revision number and
date. References will include but is not limited the following items:

Policy and Regulation: Policies or laws that give rise to the need for this
plan

DPW Policy and Standards: DPW policies and standards that give rise
to the need for this plan

Other Life Cycle Documents: Other plans or task descriptions that
elaborate details of this plan

ADDITIONAL APPENDICES

Additional appendices may be used to provide information published
separately for convenience in document maintenance (e.g., charts,
classified data). As applicable, each annex shall be referenced in the
main body of the document where the data would normally have been
provided. Appendices may be bound as separate documents for ease in
handling or appended to the end of the document. Additional appendices
shall be lettered alphabetically (D, E, etc.).

Software Test Planning Guideline References:
This document contains best practices, suggestions, and ideas that were gathered from
experience or study of the following sources.

IEEE Standard for Software Test Documentation (ANSI/IEEE Standard 829-
1983)

Software Test Planning Page 16 of 16

Defense Finance and Accounting Service – Software Test Plan

www. CarnegieQuality.com.

Standard Revision Log:
Change

Date
Version Change Description Author and Organization

04/29/2010 1.0 Initial creation Thomas King

12/28/2010 1.1 Reviewed Content – No Changes Thomas King

02/25/2014 1.2
Reviewed Content – Updated DEA
Division Director

Michael Light

http://www.carnegiequality.com/2006/05/12/software-defect-life-cycle/

